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ON GENERALIZED HARMONIC ANALYSIS
BY
KA-SING LAU! AND JONATHAN K. LEE?

ABSTRACT. Motivated by Wiener’s work on generalized harmonic analysis, we
consider the Marcinkiewicz space 9N (R) of functions of bounded upper average p
power and the space “P(R) of functions of bounded upper p variation. By
identifying functions whose difference has norm zero, we show that “P(R), 1 <p
< oo, is a Banach space. The proof depends on the result that each equivalence
class in ‘V?(R) contains a representative in LP(R). This result, in turn, is based on
Masani’s work on helixes in Banach spaces.

Wiener defined an integrated Fourier transformation and proved that this
transformation is an isometry from the nonlinear subspace UW2(R) of IM?(R)
consisting of functions of bounded average quadratic power, into the nonlinear
subspace U(R) of V*(R) consisting of functions of bounded quadratic variation.
By using two generalized Tauberian theorems, we prove that Wiener’s transforma-
tion W is actually an isomorphism from 9M?(R) onto V?(R). We also show by
counterexamples that W is not an isometry on the closed subspace generated by

UZ(R).

1. Introduction. The purpose of this paper is to find out how Wiener’s generalized
harmonic analysis [18] fits into the framework of contemporary functional analysis.

For a complex valued Borel measurable function f on R such that
lim,_, QT)™ T ;| f(x)?* dx exists, Wiener [18] defined the integrated Fourier
transformation g = W() of f as

—iux

g(u) = % (f__ool +f1°°f(x) e—tx dx +f—11f(x)e—_f:x’"‘;1 dx)

We call W the Wiener transformation. By using a deep Tauberian theorem, he then
proved that the mean square modulus of the above function f equals the quadratic
variation of its transformation g, i.e.

lim oo [ |fGRdx = lim oo [T |g(u+ ) g(u — WP du. (L1)
T-w 2T J_7p 0t 2h J_

Now, for all f € L2 (R), let

L 1/2
191 = 1l = T (55 [ 110 ) (12)

T—>o -T
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76 K.-S. LAU AND J. K. LEE

and
IM*R) = {f: f € Lir.(R), || f]| < o0}

Note that the set of functions W2(R) for which the limit on the left-hand side of
(1.1) exists and is finite is a nonlinear subspace of the linear space OM2(R).
Next, for all Borel measurable g on R, let

— (1 e 12
gl = lgle = T (57 [ lstut )= g —wPa)”  (13)
h—0* 2h —

and

Y*(R) = { g: g is Borel measurable and|| g|| < o }.

Then the set of functions for which the limit on the right-hand side of (1.1) exists
and is finite is a nonlinear subspace of the linear space “(R).

Similarly, we can define the classes of functions 9M”(R) and ‘W (R). Both 9 (R)
and VP (R) are normed linear spaces when two functions in any one of the spaces
whose differences have norm zero are identified. Marcinkiewicz [13] and indepen-
dently Bohr and Felner [3] showed that 91”(R) is complete, but the question of the
completeness of VP (R) has been open.

In §3, we show that “?(R) is complete for 1 < p < oo. For this, we find that all
usual methods of proving completeness (cf. e.g. [5], [12]) fail. We have to appeal to
the theory of helixes in a Banach space X, i.e. continuous functions x., on R to X
such that for all a,b,t ER, U{x, — x,} = X,y — X,4,, Where {U},cg is a
strongly continuous group of isometries [8], [14]. Using results from the theory of
helixes, we are able to show that each equivalence class in P(R), 1 <p < oo,
contains a function in L?(R). This enables us to get hold of a limit for any Cauchy
sequence in P(R), 1 <p < 0.

The case p = 1 has been considered by Nelson recently [17]; he showed that
Y'(R) is isometric isomorphic to the space of countably additive, Borel measures
on R with finite variation. Hence V! (R) is also complete.

Equation (1.1) shows that the Wiener transformation W is an isometry on the
nonlinear subspace U?(R) of M?(R). In §5, we show that W is an isomorphism
from OM*(R) onto V2(R) with

© . 1/2 -1
||W||=(f0 h(x)dx) and ||| = (max xh(x)) 2 (14)

where h(x) = (2sin’%)/7x% x > 0,and A(x) = sup,5, h(#), x > 0 (ie., A is the
smallest decreasing function which dominates 4). The proof depends on two special
types of Tauberian theorems which we will develop in §4 (Theorems 4.5 and 4.6).

It follows from (1.4) that

W = (fooo h(x) arx)l/2 > (fow 2smzx dx)l/z =1

X
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and

22\ —1/2
”W_l” = (max 2smx) > 1.
x>0 WX

(Numerically, | W|| ~ 1.05 and || W ~!|| ~ 1.49.) In view of (1.1), it is natural to ask
whether W restricted on (?U2(R)), the closed linear subspace generated by UW?(R),
is an isometry. We answer this question negatively and thereby disprove a conjec-
ture by Masani [16].

Finally, we observe that the Wiener transformation W is also a bounded linear
operator from M (R) into W (R), 1 <p<2,1/p+1/p'=1.

ACKNOWLEDGEMENT. The proof of the completeness of the space “VP(R) and of
the fact that W is an isomorphism on 9M*(R) onto “V?(R), the definition of k and
the proof of the result

1/2
W] < (fw h(x) dx) / and |W7Y < (max xh(x))_l/z
0 x>0

were given by Lee in his Indiana University doctoral dissertation in 1971 (unpub-
lished) (cf. [10], [11]). The equality (1.4) and the Tauberian results are due to Lau.
Both authors would like to express their gratitude to Professor Masani for his
supervision and comments on this work. Their thanks are also due to the referee
for many helpful suggestions in simplifying the paper.

2. The space 91” (R). Throughout, we assume that f is a complex valued, Borel
measurable function on R. Let w be a positive Borel measurable function. We will
use L?(R, w(x) dx) to denote the Banach space of functions f such that

© 1/p
1= (7 1) ax) < o
- o0
Let MP(R), 1 < p < o0, denote the set of locally p-integrable functions f such that

1 T 1/p
LAl = 1<sup (—27 f | F(x)IP dx) < o0.

T<o -T
Let I?(R) be the subspace of f in M?(R) such that

T 5r [ IS dx =0,

T—oo
Let 9MP(R) be the Marcinkiewicz space defined as in the introduction and let
U (R) be the set of f in M (R) such that

lim 57 [ S dx
T 2T -T *

exists.

PROPOSITION 2.1. Let 1 < p < oo and let a > 0. Then

MPR) G L"(R --i”‘——).

? 1+ |x|l+a
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ProOF. Forany T > 1,

P g (T 1 .
f—TlTI);T”_"dx—f-rmﬁ:d(fo 5(63] dy)

1

=17 7% f_T | fOIP ay

+(l+a)f0 W('f |f(P)IP ay )

e ML L

<1+T‘+°2_f

w200+ 0 [T —L (5 (10 &) o

This implies

© |f()P

—==2 _dx <k »
LT (1S 1laerY
where
LS dx
k=2(1+ _—
( a)fo 1+ x*e

Hence

MP(R) C LP(R, —-1—)
1+ |x|'*e
The strict inclusion follows from the fact that f(x) = (log x)‘/"xu,w)(x) is in
L?(R, 1/(1 + |x|'*%)) but is not in MPR). [

PROPOSITION 2.2. Let 1 < p < 0. Then

(i) M?(R) is a Banach space,

(ii) M2 (R) is isometric isomorphic to the quotient space MP(R)/I?(R) under the
natural identification.

PrOOF. We leave the simple proof of (i) to the reader. To prove (ii), we identify
functions in 9M?(R) whose differences have zero norm. We will still use f to denote
the equivalence class of f in IM?(R). The map 7: M?(R) - IM?(R) with 7(f) = fis
clearly a contraction. It is also a surjection, for if fis in NP (R), we let

’ — f (x)’ IxI > l’
fx) {o, x| < 1.
Then f' € MP(R) and || f — f'||logs = 0. Hence 7(f") = f' = f in IN?(R). Also note
that +~1(0) = I(R). This induces a bijection 7: M?(R)/I?(R) » IM*(R) and ||7|
< 1. To show that 7 is an isometry, we need only show that

/p

1+ gl < T (57 [ 11000 ax)

ge"(m
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But this follows directly from

sup (57 [ 1106) = St m0 )

1<T

<sup(2Tf |f(x)|”dx) Va>1. 0O

In the following, we will give an example that U”(R) is not a linear subspace in
OMP(R): Let E, = [2n)!, 2n + 1)!,, n > O,and let f = x, £,

-1 1
g(x) = {XU,E,(x) 2° X > 0’ and h(x) = { 2 X > 0,
0’ x < O, 0, x < 0.

Itis clear that f = g + h,
. 1 T . 1 T(1\P 1\*!
P P = —_— — = [ -
A 3T f_T|g| de = lim 2Tf0 (2) dx (2)
and
1 T 1\7+1
1 —_— 4 = [ —
Jim 57 [ ax=(3)

Hence g, h € UP(R). Observe also that

s st [ 1 = Jim s [
and
N e T AL cre A
> b, (2"2?21,)1_1%")! = %

This shows that f & W?(R) and UP (R) is not a linear subspace of M (R).

We remark that in [9], we prove that for 1 <p < oo, each f € UP(R) with
IIfll =1 is an extreme point of the unit sphere S(INF(R)). The set of such f,
however, does not exhaust all extreme points of S(SW*(R)). For p = 1, S(ON'(R))
does not contain any extreme points. The nonlinear subspace U (R) has also been
studied by Masani in [15] where he introduced vector graph theory and conditional
Banach spaces. For other properties of 9 (R) and its subspaces, the reader may
refer to [1], [3] and [9].

3. The spaces V7 (R) and their completeness. For each & € R, we define 7, and A,
as

(raf)(x) = f(x + h) and A,f=(m, — D)f
where x € R and fis a Borel measurable function on R. Let WP (R) be defined as in
the introduction; it follows directly from the definition that for f € VP (R),
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1= T (o [ i = s )

h—0*

- Tm (% / °‘;|(¢,, — DAx)P dx)l/p.

h—0*

By identifying functions whose differences have zero norm, it is easy to prove that
(‘’@), || - | is a normed linear space. In the following, we will show that each
f € PR), 1< p < oo, is equivalent to a g € L’(R), i.e., || f — g||«» = 0. This fact
will be useful in proving the completeness of ‘YP(R), 1 < p < oo (Theorem 3.6) and
the surjectivity of the Wiener transformation from 9M?(R) onto “V?(R) (Theorem
5.2).

Let A be a subset in a Banach space X; we will use {4)> to denote the closed
linear subspace generated by A. Let x,, be a continuous function on R to X; we
call 5, =<{{x, — x,: a,b €R}) the chordal subspace of the curve x.. The
function x, is a helix in X if there exists a strongly continuous group of isometries
{U},cr0n S, onto S, such that, for any 7 in R,

L’t(xb - xa) = Xpyr — Xa+15
{U,},er is called the shift group of the helix x,.

THEOREM 3.1 (MasANI [14]). Let x, be a helix in X with shift group {U,},cg-
Then

0
a, =j; e (xq— x,)dt

(Bochner integral) exists and is in &,. Moreover,

b
X, — x, = (U,, -u.-f U,dt)(ax) Va, b €R.
a

We call a, the average vector of the helix x,.

LEMMA 3.2. Let 1 < p < oo and let f € W(R). If x, = 7,f — f, then x, is a helix
in LP(R) with shift group {7,},cgr and the average vector is given by

f0°° e™'(f—1f)dt €S, C L*(R).

ProOF. Since f € VP(R), x, = (1, — 1)f € L?(R) and
. L _ P =
Jim [ (= DAVP A = 0.
It follows that for any ¢ € R,
. ®© . ©
Jm [ s ®) = QP dA = lim [ (e = 7)) AN

= Jim [” |~ DO ax =0,
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Hence x,: R — L”(R) is continuous. By definition, we can show that, for any a, b
and t €R, 7(x, — x,) = X,,, — X,,, This implies that {r,},cg is a strongly
continuous group of isometries from &, (C LP(R)) onto &, and x,, is a helix in
L?(R) with shift group {r,},cg. Finally, by Theorem 3.1, thereisa g € &, C L?(R)
such that

g=j:° e"‘(xo—x,)dt=foao e '(f—-rf)d.. O

THEOREM 3.3. Let f € VP(R), 1 <p < oo. Then there exists a g € L’(R) such
that || f = gllsp = 0.

PROOF. Let g = (e “(x, — x,) dt be as in Lemma 3.2. For any & > 0, we have
(Theorem 3.1)

h
(=g —f)=[ rgar
—h
and (8, p. 82)
h Ao
S nea] < [ st ae < 2mis,,
Hence
(1
If = gllo = B (57) " Im = )& = Dll, =0. O

h—0*

The theorem is not true for p = 1 as V!(R) is isometric isomorphic to the space
of countably additive Borel measures on R with finite variation [17].

In the following, we will consider the completeness of YP(R), 1 <p < oo. The
case p = 1 follows directly from the above isometric characterization of V'(R).

Let B(L?(R)) denote the space of bounded linear operators on L?(R). For any
a, nin R with a < b, we let

1 b
Ia,b=m j; ’l',dt,

the integral being a Riemann integral in the strong operator topology in B(L?(R))
(8, pp. 62-67]). We note the following facts:

VS € R’ TsIa,b = a, bTss (31)

Vf € L’(R),  lim I,,(f) =f inL?(R), (32)
Vh>0, |l <1, (33)
Va,bER,a<b and Vf€LP’R), I, ,(f) €D, (34

where 9, is the domain of the infinitesimal generator 4 of the translation group
{74}ser o0 L?(R) ([8, p. 307]). It is well known that A4 is the restriction of the
differential operator on %, and %, = {f € L?(R): f is absolutely continuous and
f € LP(R)}. Letg € 9, ; then
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— (1 o p _ 1
i —_ - P =T @e-n/pfl ___ —
i (57 [ I —r0eP) = Tm a7 (- 7)g

h—0+ h—0*
=0-|4gl, =0.

lp

Therefore, we have

PROPOSITION 3.4. For 1 <p < o0, let f € LP(R) be absolutely continuous and
f € LP®R). Then || fllsp = 0.

Let a <b; then (3.4) and Proposition 3.4 imply that |1, ,(f)lle = 0 for all
f € L’(R), 1 <p < . From this, we immediately draw the following conclusion:

LemMa 35. Let 1<p< oo, let f,f,...,f, €ELPR) and let a,,...,aq,
b,...,b. €ERwitha, <b,. Then

k
|}/ = 3 L ()] =l

LY

THEOREM 3.6. For 1 <p < oo, the normed linear space Y’ (R) is complete.

Proor. For convenience, we let I, , = I,. Let {f,} be a Cauchy sequence in
YP(R); it suffices to show that { f,} has a convergent subsequence. Without loss of
generality, we assume that

I fasr = fullp < 1/27%1,

Also, by Theorem 3.3, we may assume that f, € L?(R). For n > 1, select a
decreasing sequence of positive numbers {A,} in (0, 1) such that lim, , Ak, = 0 and
for0<h <h,

(1/28))1(74 = 1_)(fyr = S)ll, < 1/2% 33)
Define ¢, = 1 and ¢,, n > 2 satisfying
{e,} NO asn— o0, (3.6)
I(Z, = DAll, < 2h,)"77/27, 3.7)
(L, = DA = I, < @k,)'77/2", m=nn~-1 and I=1,..., m—1.
(3.8)

((3.7) and (3.8) follow from (3.2).) For any positive integers j < k,

k

2 .(12..*1 - I%)f,,

nm=j

k
< nz_j("(la,,” - 1)(f;l - fl)”p

+I(Z, = D)(f = DI,
+I(L,,, = DAll, +I(L, = DAIL)
< 1/27* (by(3.7) and (3.8)).
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Therefore, the sequence

k «
(1 + 2 0 - 00

is Cauchy in L?(R) and converges to, say, f € L?(R), i.e.,

0
f=1L(f)+ 21 (L., — 1)f, inL?(R). (3.9)
n=
Note that for each g € L?(R), by (3.2) and the telescoping of the terms,
0
g=102)+ 21 (I, —1,)g inL?(R). (3.10)
ne

We will estimate the term || f — f;||«p:

15 = o = T () = 700 = 1
Kl h—0+ 2h h —h k/1p
_— 1\? 0
= lim (2_h) (m — ’T..h)(le,(fl - f) + 2 (Ie“‘ — Ie')(f" _fk))
h—0* = i
(by (3.9), (3.10))
— ([ 1 \/? o
B hh—>1(];l"' (ﬁ) (% = T"'),,_zkﬂ(lem - L) - f) I

(by Lemma 3.5)
For abbreviation, for any positive integers r < / and h > 0, let

1 \!/P
Ah,r,l = (57,')

Fix h € (0, i) and let g > k be the unique integer such that h, <h <h,_,. For
I >gq, we have 4, , < 4,, , + A, ,,- Observe that

1 \!/p
Ansa = (37)

)l/p

(changing order of summation and adding up telescoping terms)

4

("'h - 7-;.)( H(Ie,m - Iz,,)(f;l _fk))

n=r p

q n
(”h - ”—h)n_§+l(1e,.“ - Ie..)' 2 (f, - f}—l)

J=k+1

p

(Th - T—h)j_;_’-](leqﬂ - Ig)(fj - fj—l)

]
——
Sl

P

1 1/p 4
<(3)", 2 M= B = 06~ 520,

+1

1/p 4
<z5)" 2 0=~ gl by G3)

=k+1

<1722 (by (3.5))
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l 1/
Ah,q,l < 2 (Lh) p”(”h - T—h)(Ie,,“ - Iz,,)(f;l _fk)“p

2
! 1 1/p
<2 3 (g) Wew = 1) =R, Gy (G3)

n=gq+1 n
! 1 1/p
<2 3 (5) 000, = 00~ 80, + 10, = D = K1)

< 1/27% (by (3.8)).
We have shown that for any integer k, for any 4 € (0, ), and for large integer /
(i.e., I > g as defined previously), 4, ,, < 1/2%3. This implies that

If = fill < 1/2573
and hence { f,} converges to fin P(R). [
We conclude this section by considering a related space, ‘Y (C), C = [0, 27],
which consists of those Borel measurable functions on R with period 27 and

1= T (5 o)
= lm |+~ < oo0.
h—0* h 0

By identifying functions whose differences have zero norm, it is easy to show that
Y (C) is a normed linear space. If we consider functions on C as 2w-periodic
functions on R, we can prove the following (compare this to Theorem 3.3):

THEOREM 3.7. For 1 <p < o0, W(C) C L?(C).

REMARK. In [6], Hardy and Littlewood proved that ‘Y(C) n L'(C) C L?(C), 1
<p < o0.

The proof depends on two results due to Carroll [4] and Boas [2]: Let AL?(C)
denote the set of functions f (not necessary measurable) on C such that A,f = (7,
— 1) fis in L?(C). Carroll proved that if f € AL?(C), 1 < p < oo, then f admits a
decomposition f = g + H + S where g € L?(C),

H(h) = fo " A(x) dx,

which is additive on C, and A,S(x) = 0 for almost all x. Moreover, Boas proved
that if the above S is measurable, then S is constant a.e.

ProoF oF THEOREM 3.7. Let f € VW (C). Then A,f € LP(C). Let g, H and S be
defined as above. Since f is measurable and A,f is integrable on C, Tonelli’s
theorem applied to (A,f)* and (A,f)” shows that H is measurable. In addition, the
expression for H shows that H is additive and periodic on R, so that it is identically
zero. This implies that S is measurable and hence S is a constant a.e. Therefore
f=g+ Cae.andf € LP(R).

By using Theorem 3.7 and the same argument as in Theorem 3.6, we obtain

THEOREM 3.8. For 1 <p < oo, YP(C) is a Banach space.
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4. Tauberian theorems. In proving the identity (1.1), Wiener introduced a fairly
general form of Tauberian theorem which applies to functions in U?(R). In this
section, we will consider two similar types of theorems which apply to functions in
M (R).

Let g be a function of bounded variation on [a, b]. For all x € (a, b), let
pe(a, x] = g(x +) — g(a + ). Then it is well known that p, has a unique countably
additive, regular extension to the g-algebra of Borel subsets of [a, b]. The following
integration by parts holds.

LemMMA 4.1. Let f, g be measurable functions on [a, b] such that f is integrable and g
is of bounded variation. Then

/.  fx)g(x) dx = ( /. " f(x) dx)g(b) -/ ”( /. " f(1) dt) dpy(x).

PrOOF. The result follows by applying the Fubini theorem to the right-hand side
of the identity

fabf(x)g(x) dx = fabf(x)(f: dp (1) + g(a +)) dx. [

Let S* denote the set of positive Borel measurable functions on [0, o] such that

sup—l-fo(x)dx<l
i<t T Jo '

For any T, a > 0 and for any f € S *, the substitution x = ¢/ T shows that
a Tx) d 1 aT d
fo f(Tx) x—a(ﬁj; £(t) t)<a.

PROPOSITION 4.2. Let h be a positive decreasing integrable function on [0, o0). Then
0 SEA(Tx)h(x) dx < [Fh(x)dx forallf € S*, T > 1,
(i) lim,_, o, fXA(TXx)h(x) dx = O uniformly for all f € S*, T > 1.

ProoOF. (i) Note that because h is a decreasing function, the corresponding
measure p, is negative. Hence forany 8 > 0,f € S,

JEESTOTE ( [ 57) dx)hw) - ( [ A0 i) iy

< Bh(B)—j;Bxdu,,=j;ﬂh(x)dx.

Letting 8 — oo, we obtain (i). To prove (ii), we observe that by (i), for each
fFESH, T >0, [$(Tx)h(x) dx < oo; hence

lim fa ® (Tx)h(x) dx = 0.

In order to obtain the uniform convergence for f € S* and T > 1, we let

_ [ h(a), ifx<a,
halx) = { h(x), ifx>a.
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By applying (i) to h,, we haveforf € S*, T > 1,
[T (T0h(x) dx < [ {(Tx)h,(x) d
a 0

< [T hy(x) dx = ah(a) + ] % h(x) dx.
0 a
Note that because 4 is decreasing,
2 h(a) <fa h(x)dx -0 asa-—> oo.
2 a/2
Also,

fw h(x)dx >0 asa— .

This implies that

lim f°°f(Tx)h(x) dx =0 uniformly forallf € S*, T > 1. [J

LEMMA 4.3. Let h be a positive continuous function on [0, o) and let h(x) =
sup,,, . h(t). Suppose that h € L'[0, ) and suppose there exist disjoint intervals
(a, b),i =1,...,k, in[0, o) such that for each x € (a;, b,), h(x) < h(b,). Let

k

n=3 (h(b,.)(b,. ~a) - L " h(x) dx).

i=]

Then

sup ( Tim fom S(Tx)h(x) dx) > j:o h(x) dx + 7.

feS* \ s

PRrOOF. It suffices to show that for any 0 < & < 7, there exists an f € §* such
that

Tim f * K(Tx)h(x) dx > f ® h(x) dx + (n — ¢). (a.1)
T—oo 0 0

We will consider the case k = 1 only. The case k > 1 follows from the same idea
of proof. We write @, = a and b, = b and without loss of generality assume that
a > 0. Otherwise, let {4,} \ 0 and let

b
m, = h(b)(b = &,) ~ [ h(x) dx;

aﬂ
then {n,} — n. We can prove (4.1) for (4,, b) and 7,.
Since 4 is continuous, for ¢ > 0, we can find 0 <¢, 0 <& <¢/8 such that
|x — b| < & implies that |A(x) — h(b)| < ¢, and

€ b+é8
n == < (h(b) = &)(b+ 8~ a) - fa h(x) dx. 42
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Since # is decreasing and integrable, Proposition 4.2(ii) implies that there exists an
a > b + & such that

f”p(Tx)h(x)dx < foop(Tx)f{(x)dx <8 VpeS*HT>Ll
In particular,
o0
f h(x) dx < 8.

Let {§,} be a sequence of positive numbers such that 27,5, <& and let M be the
upper bound of h. Let T, > 1 and let

1, 0<x<aTy,
filx) = {O, aT; < x.
Suppose we have chosen T,,_,, f,_,. Select T,, such that
a aM
T, > max{; T, ) 8_,, Tn—l]
and define
0, 0<x<aT,_,
1, aT,_, < x <aT,
0, aT, < x <bT,,
F(x) = 2:_2—_“, bT, < x < (b + 8)T,,
1, (b+8)T, <x<aT,
0, aT, < x.

Note that the functions { f,} have disjoint supports. Let f = 7., f,. It is easy to
show that

1

T fon(x)dx= 1 for T €1, oo)\gz(aT,,, (b+8)T,)

and
1

L [Mwax<1 for7e U (T, b+ 9)T,).
0

n=2

Hence f € §*. We will show that

Tim f0°°f(T,,x)h(x) dx > f0°° h(x) dx + (n — ¢).

n—o0
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Forn > 1,

'j(;wf(T,,x)h(x) dx — _l(;afn(Tnx)h(x) dx

< l i * AT, x)h(x) dx — i ® £ (T,x)h(x) dxl +

<3 [HTowa+ S [T e+ o
i=1 Y0 i=n+1 Y0

n—1

<2

f“T'f,.(x)dx+0+8
jw=] 1]

n—1

al, +8< > 8§, +8<28

i=1

n—1

<2

im=1]

S TEG I

and
i * f(T,x)h(x) dx

b+8 (b + ) —
o

=f° h(x)dx+fb 2 n(x) dx+fb‘:8h(x) dx

aTm— I/Tn

>f0"h(x)dx— M%— +(b+8— a)(h(b)—e,)+fb18h(x)dx
> fo" h(x) dx — 8, + (n - %) (by (4.2))

© €
>f0 h(x) dx + 1 — (2a+5).
Combining the above two estimations we have, forn > 1,

[T 1T h(x)dx > [T h(x)ydx + (- e). O
0 0

PROPOSITION 4.4. Let h be a positive continuous function on [0, ). Let h(x) =
sup,;, .h(x) and assume that h is integrable. Then

sup (Eﬁ fo * ((Tx)h(x) dx) = fo * h(x) dx.

fES* \ THwo

PROOF. Since / is decreasing, by Proposition 4.2(i),

sup ( Tim j:o f(Tx)h(x) dx) < fseug*( Tim j‘;w A(Tx)h(x) dx)

fES* \ T T—o0
[ <
<f h(x) dx.
0

We will prove the reverse inequality. That % is integrable yields an a > 0 such that
JPh(x) dx < e. Since h is continuous, so is #; hence the set {x € (0, a): h(x) >
h(x)} is the union of a (finite or infinite) sequence of disjoint open intervals
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{(a;, b)} in (0, a). Let 1 < r < oo be the number of such intervals. Note that k is
constant on each (a;, b,). It follows that

fo “h(x) dx = fo “h(x) dx + ,é, (h(b,)(b,. ~a)- L " h(x) dx).

Lemma 4.3 implies that for any integer k,0 < k < r,

sup ( Tim fow f(Tx)h(x) dx)

fe€ESt* \ THwo
> fo “h(x) dx + él(h(b,.)(b,. -a)- f % h(x) dx).
Hence,

sup (EE fowf(Tx)h(x)dx) >f0“ h(x) dx

fES* \ T
and the proof is completed by observing that [ fﬁ(x) dx <e. O
Let 9L* denote the class of positive Borel measurable functions f on [0, c0) such

that Er_m(l /T f(x) dx < oo. The following is the first main result of this
section.

THEOREM 4.5. Let h be a positive, continuous function on [0, o0). Assume that (i)
h(x) = sup,;, k(%) is integrable and C, = [Fh(x) dx, and (ii) f € OU*. Then

lim j:of(Tx)h(x) dx < C, lim —;—, j{;Tf(x) dx.

T—o0 T—o0
Moreover, C, is the best estimation of the inequality for the class of functions f in
om*.

ProoF. For any function p which is integrable on [0, p) and vanishes on [p, o0),
© 1 [ t
i = lim — th| =) dt
Jim [7 PR éx = Jim . 7504 7)

< ( fim iT)(Mfo"p(t) dt) -0 43)

T

where M = sup,,oh(?). Let f, = fx,0p 0 > 1. It follows from (4.3) that

m [ * {(Tx)h(x) dx = Tm [ ® £,(Tx)h(x) dx. (4.9)
0 T Y0

T—o0

Applying Proposition 4.4 with (supr,,(1/T) (5 )Y, € S*, we get

— ) 1 T
Tim fo fP(Tx)h(x)dx<C1;1;pp 7 fo f(x)dx, p>0.

T—>o

Hence by (4.4),

Tm [ (Tx)h(x) dx < C; Tm 1 fo " f(x) dx.

T—o0 Y0 T>o

~
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To prove the last assertion, it suffices to show that for any € > 0, there exists an f,
such that

— 1 T — o
lim Tfo f(x)dx <1 and Tm fo £(Tx)h(x) dx < (C, — e).

T T
But this inequality is obvious from Proposition 4.4. [J
Our second main result in this section is:

THEOREM 4.6. Let h be a positive continuous function on [0, 0o) such that h(x) =
sup,,, .h(?) is integrable. Suppose (i) there is an x, which satisfies xoh(xg) =
max, ,,oxh(x) = C, and h(x) > h(x) for all x in [0, x}, (ii) f € ON*. Then

— 1 T - ®
C, lim — f f(x) dx < lim f A Tx)h(x) dx.
T Jo Tow 0

T—o0

Moreover, C, is the best estimation of the inequality for f € O,

PRrROOF. Let f be given as above; then

Cogyy [} 1 o = [T SO () e
< %‘ j(;Txof(x)h(%) dx (since h(y) > h(xo) Vy € [0, xo])
= [ A(Tx)h(x) dx

oo

< A Tx)h(x) dx.

(=)

(=)

By taking limit supremum on both sides, the first part of the theorem follows.
To prove the second part, we will construct, for a given 0 < e < 1, a positive f
such that

—_ T —_ )
m — f f(x)dx =1 and Tim f A(Tx)h(x) dx < C, + e.
T T 0 0

T—o0
We will need the following statement, where the proof depends on the uniform
continuity of A: for any a > 0,

) Xo+ 8 [B(x0+8) _
im =g [ () dx = (Broh( By

uniformly for 0 < 8 <a. (4.5)
For any 0 < ¢ < 1, we choose a > x, such that
foop(Tx)I;(x) dc<< VpES*andT >1 (4.6)

(Proposition 4.2(ii)). Since xyh(xp) = max, ,oxh(x), by (4.5), there exists 0 <§ <
a — x, which satisfies
Xo+ 6 [B(x+8) € o
__s_fm h(x) dx < xoh(xo) + 7 VO<'B<x0'
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Let T, > 1 and select T, > T, _, so that

Tn-l X0 1 ") 1
T <o T 2 5<%
and
x0T/ T, é €
P f hx) dx < = 3 @.7)
Let
Xo+ O il
f= 0 X[ x0T, (Xo+8)T,] and f= '21 Jar
Note that the functions { f,} have disjoint supports. For any 7,
(x0+8)7T,
—_— d
(xo + 8)T f flx) dx
l n—1
R N— T, + + )T,
(x0+8)Tn((xo+8) n igl(xo 6) l)
1! 1
=1+ Tn 'E-:l T <1 + —
Since (1/ T)fTf(x) dx has a local maximum at each (x, + 8)7,, we have
sup f f(x)dx <2 and Tm — f " fx) dx = 1. (4.8)
1<T T T—o0 T Jo

Now for any T > 1, there exists an n such that x,T, < aT < x,T,,,. Hence
0<T,/T<a/x,and

) ® (Tx)h(x) dx < [ ATxyh(x) dx +5 (by (46)and (48))
0 0

=,§1 f £(Tx)h(x) dx+§

n + 4
<Y %o+ 8)T/T xo h(x) dx +<

=1 JxoryT 4

Xog+ 8 [(x0+8)T,/T €

— h(x) dx + = (by (4.7))

6 xoT,/T 2

< xoh(xy) + /4 +¢/2 (by (4.6))
<C,+e

The proof is complete by taking the limit supremum on 7. []

We remark that the function h(x) = |2sin’x/7x?|, x > 0,1 <p < oo, satisfies
the hypotheses in Theorems 4.5 and 4.6. We leave the simple verification to the
reader. This function will be considered throughout the rest of the paper.
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5. The Wiener transformation W.
A. The isomorphic nature of W on OT2(R).
Proposition 2.1 implies that M%(R) C L*(R, dx /(1 + x?)); hence for f € M*(R),

the integral
-t e P
f—oo M ‘l; x2 4

exists. This implies that

[T [ e

— o0 1 —ix

converges in mean square. In [18], Wiener defined the following transformation W:
for f € M2(R), let W(f) = g where

20 =5 ( [+ [ 7 a0 S

We call W the Wiener transformation. Now, for h > 0,

dx + f fnE— =1 dx).

—ihx

) ihx _ .
(g = 740w = 32 [ T e

- __l_ *® zsm(hx) — iux
=5 f_wf(x)————x e~ dx.
Thus 7,g — 7_,g is the Fourier transformation of
2 sin(hx)
Vz
and the Plancherel theorem implies
sin’ hx
5 [ st By = g(u— WP du= ML s
— 00
Hence
sin hx
W= T [ 1P
h—»O"' — o0
sin?x
= [ ArPTS (5.1)

T—-oo ¥ —©

Letting h(x) = (2sin’x)/mx? x > 0, and f'(x) =1( f(x)|2 +|f-x)P, x>0, f €
M?*®R), Theorem 4.5 and (5.1) imply that W(f) € V?(R) and W(f) =0 for all
f € I*(R). Since M*(R) = M4R)/I*R) (Proposition 2.2), W induces a map from
M2(R) into V(R).

THEOREM 5.1 (WIENER [18]). Let f € UWR) C MA(R). Then | W(H)|lsz = | fllonz-

Our main result is:
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THEOREM 5.2. The Wiener transformation W defines an isomorphism from OMZ(R)
onto V*(R) with

-1/2

© . 1/2 .
1w = (" A ax) " and W = (max xh(x)
where h(x) = (2sin®)/nx? x > 0, and h(x) = sup,; .h(?).
PRrOOF. It is easy to show that A(x) = (2sin®x)/7x?, x > 0, satisfies the hypothe-
ses in Theorems 4.5 and 4.6. By letting
1
) =3 (fF + f=x)P),  x>0,f € M(R),

the same theorems yield

7= L (T 2 T (% 2
GIm 57 [ 1fGPdx < Tm [ |A(TPh(x) d

c ? dx, IM*(R),
<G Hm 37 | 0P e M@

where C, = [Ph(x) dx and C, = max, 5, oxh(x). By (5.1), we have

Cllflize < IW(N)IFe < Clll flda,  f € TR).
Moreover, Theorems 4.5 and 4.6 imply that C, and C, are the best constants to
estimate the above inequalities. Hence we conclude that W is an isomorphism from
IM?(R) into V?(R) with
Wl =C}/? and W~ =C7V2
It remains to show that W is a surjection. Let g € ‘V’(R), by Theorem 3.3, we
may assume that g € L(R). Let £ be the (inverse) Fourier transformation of g, i.e.

. 1
é(x) = =
and let f(x) = —i V27 x§(x), x € R. We claim that (i) f € OR*(R) and (ii) W(f) =
g in Y2(R). To prove (i), note that
(ta(8) — T_4(8))(x) = (e7™ — e™)g(x) = -2i(sin(hx))g(x). (5.2)
As C, = max, (2sin’)/mx, Theorem 4.6 applied to f'(x) =1(fx)|?* +
| f(=x)P), x > 0, yields

g(u)e"‘" du

C, Tim 2Tf |f(x)P dx < hm f |f(Tx);25m" dx

T—o0

P 12
m - f * |-iVIr xg(x)PSBEX gy
h—0* h — o0 '”xz

Tim % [7 218 sin*hx dx

h—0* — 0

llgll3: (by (5.2) and the Plancherel theorem)
< 00.
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Thus f € OMM3(R). To prove (ii), we observe that
—iu; e i 1

W = e ([ + [T 0 @+ [ 0 )

—ix —ix
_ \/;_W ( f_‘: $(x)e= " dx — f_‘l £(x) dx)
=g(u)+ C a.e.
where C = —(1/27)f", §(x) dx. Since constant functions in V?(R) are equivalent
to zero, we have W(f) = gin V*(R). O
B. The nonisometric nature of W on {U*(R)>.
Let h(x) = (2sin’c)/7x?, x > 0. It follows from Theorem 5.2 and elementary

calculus that
0 . 1/2 2 © Sinzx 1/2
1w -(fo h(x)dx) >(;f0 x2 dx) =1
and
22 \~—1/2
w1 = (max 2smx) > 1.
x>0 X

In view of the fact that W is an isometry on QU?(R) (Theorem 5.1), Masani [16]
asked whether W is an isometry when it is restricted on (W?(R)), the closed linear
subspace generated by UW*(R).

Let U2(R) be the subset of V?(R) such that for g € UX(R),

lim if°°|g(u+h)-g(u—h)|2du
h—0* 2h J_ o

exists. Theorems 5.1 and 5.2 imply that W is an isomorphism from (?U?(R)) onto
(UA(R)). In the following, we will give two examples /; and /, € (U(R)) with
W4l = )l = 1 and ||W(Z)|| > 1and | W(})| < 1. Hence neither W nor W ~! can
be a contraction on {UZ(R)>, (U?(R)) respectively. These answer Masani’s ques-
tion negatively. Both examples refine the functions constructed in the proof of
Lemma 4.3 and Theorem 4.6.

ExaMPLE 5.3. There exists an /, in (CU?(R)) with ||/;||ogz = 1 and || ()|l > 1.

We will use the same notation as in Lemma 4.3 with A(x) = (2sin’x)/7x?, k = 1,
and [a,, b,] = [a, b] such that h(b) = h(a) > h(x), x € (a, b). We assume further
that the 8 we choose in Lemma 4.3 satisfies (b + 8 — @)/8 = (m + 1)* for some
positive integer m. Let T,,, f, and f be as in Lemma 4.3. Define forn > 1,1 <i <
2m + 1,

(0, 0<x<aT,_,
1), aT,_, <x<aT,
s 1D, aT, < x < bT,,
=) =, L BT, < x < (b + 8)T,,
D)™, (b +8)T, <x <aT,
LO, aT, < x.
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Note that (27} Ifi(x) + 1)* = £,(x). For each i, the functions { f'}%, have disjoint
supports. Let f = 32_, f'. Then | f'| =1 5 and f*is in U?(R) for each i. Let

2m+1
-2(E )
Then /, € (UW*(R)) and

2m+1 00

nr=2 3 (2 £0)+3
2m+l 2

2-:1 fi(x) + where x € supp(f,)
= 2f,(x) = 2f(x).
Hence
e = T 57 [ hGoPdx = T 4 [T G de =1
T—o0 2T T—>o00 0

and by (5.1) and (4.1),

IW()IEe = hm f |1,(Tx )lzsmx

= Tm f 2|f(Tx)|2sm" dx
T—oo
® 2sin’x
> dx = 1.
j(; ﬂx2

EXAMPLE 5.4. There exists an /, € (WA(R)) such that ||/||erz = 1 and || W(L)||
<L

We use the same notation as in the proof of Theorem 4.6 with h(x) =
(2sin’*c)/mx? and C, = max, gxh(x) < 1. We assume that 0 <e < 1 — C, and let
8 be as in Theorem 4.6 and satisfy the condition:

+ 8
ad. 5 = (2m)* for some integer m.
Let {T,} be as in Theorem 4.6 and forn > 1, 1 < i < 2m, define
o, x < xoT,,_,;
) -1), xoT,_, < x <x,T,,

f,:(x) = ( ) 0 1 0
1, xoT, < x < (xo+ 8)T,
0, (xg+8)T, < x.

Then

o+ 8
(2 f') = X(xoT, (0+8)T, I

i=1
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Note that for each fixed i, the supports of the functions { f/}., are disjoint. Let
fi=32_,f5 then |f| =1 and f' € W (R). Let [, =V2 327 f'. It follows that
Le <Gll$'2(R)> and

Tm L (T e =Tm L (T -
lim -i—];fT|12(x)| dx = Tim Tfo f(x) dx =1

T—o - T—oo

where f is defined in Theorem 4.6. By (5.1) and the construction of f, we have

1w = Tm [ 2f(T)

C. W on 9 (R).

It is well known that for 1 < p < 2, the Fourier transformation is a contraction
from LP(R) into LF(R), 1/p + 1/p’ = 1. Let f € M’(R), 1 <p <2, and let g =
W(f). Since 7,g — 7_,g is the Fourier transformation of

\/§ S 2202,

smx

dx<C2+E<1

we have
(/7 150+ 1) - st - mp )™
( \f flx )S“‘(""’ & )W
This implies _w
Il = T (55 f 7 l6tu+ 4) = o= R d)
‘Bl o2 e “”
- B ([ ey ) . 63

THEOREM 5.5. For 1 <p < 2, the Wiener transformation W defines a bounded
linear operator from M (R) into W' (R) with

© . 1/p
1wl < (f h(x) dx)
0
where h(x) = |(2sin’x)/wx?|, x > 0.
PrOOF. The result follows from Theorem 4.5 and (5.3). [J
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